In your group, discuss the following and come up with a consensus definition or description.

Quantum Number	n	1	m _l	m _s
Quantum				
Title				
Allowed				
Values				
Definition & physical description				

n	1	m _i	Subshell Designation
1			
	0		
		-1, 0, 1	
			3s
3			
3	2	-2, -1, 0, 1, 2	3d

1	Which h	act dace	ribe the	chane	of a c	orhital	
Ι.	vv nich b	1671 (167)	.nbe me	Shabe	o	oronal	

A) three lobes B) a sphere C) two lobes D) eight lobes E) four lobes

2. Describe the shape of a p orbital.

A) four lobes B) a sphere C) two lobes D) three lobes E) eight lobes

3. Describe the shape of a d orbital.

A) a sphere B) four lobes C) three lobes D) two lobes E) eight lobes

- 4. In your group, decide which of the following best describes an atomic orbital:
 - A) a fixed path that an electron follows around the nucleus of an atom
 - B) the region of electron density for a covalent bond
 - C) the repulsion of all the electrons among themselves
 - D) the shape of an atom
 - E) the region of high probability for an electron around the nucleus of an atom
- 5. Define what is meant by a "node" with regards to an atomic orbital.
- 6. How many different values of I are possible in the third principal level?

E) 4

- A) 2
- B) 3
- C) 1
- D) 0
- 7. Which one of the following set of quantum numbers would not be allowed? Explain why.
 - A) n = 3, l = 2, $m_l = -1$
 - B) n = 3, l = 2, $m_l = 1$
 - C) n = 3, l = 1, $m_l = -1$
 - D) n = 3, l = 0, $m_l = 0$
 - E) n = 3, l = 3, $m_l = 1$
- 8. Identify the correct values for a 2p sublevel.
 - A) n = 2, l = 1, $m_l = 0$
 - B) n = 3, l = 1, $m_l = 0$
 - C) n = 2, l = 1, $m_l = -2$
 - D) n = 1, l = 0, $m_l = 0$
 - E) n = 4, l = -1, $m_l = -2$
- 9. Which of the following subshells is correctly designated?
 - A) 3s3
- B) 2p6
- C) 4d11
- D) 3f2
- E) 1p5
- 10. Which set of numbers are allowed for m_i for a d orbital.
 - A) -2, -1, 0, 1, 2
- B) 0, 1, 2, 3, 4
- C) 1, 2, 3, 4, 5
- D) 1, 2, 3
- 11. Each of the following sets of quantum numbers is supposed to specify an orbital. Which of the following sets of quantum numbers contains an error?
 - A) n = 3, l = 3, $m_l = -2$
 - B) n = 1, l = 0, $m_l = 0$
 - C) n = 3, l = 0, $m_l = 0$
 - D) n = 2, l = 1, $m_l = -1$
 - E) n = 4, l = 2, $m_l = 0$